Lee, VW, Twu, N. & Kymissis, I. Micro-LED technologies and applications. Inf. Avail. 3216–23 (2016).
Google Scholar
Zhan, T., Yin, K., Xiong, J., He, Z. & Wu, S.-T. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23101397 (2020).
Gong, Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials (Basel) 11842 (2021).
Wu, Y., Ma, J., Su, P., Zhang, L. & Xia, B. Color realization of micro-LED screens. Nanomaterials (Basel) ten2482 (2020).
Marinov, VR 52-4: very high speed laser technology for the assembly of µLEDs. SID Symp. To dig. Technology. Porridge. 49692–695 (2018).
Bower, CA et al. Emissive displays with transfer-printed assemblies of 8 µm x 15 µm inorganic light-emitting diodes. Photon. Res. 5A23–A29 (2017).
Chun, J. et al. Vertically stacked color tunable light emitting diodes fabricated using wafer bonding and transfer printing. ACS Appl. Mater. interfaces 619482–19487 (2014).
Kang, C.-M. et al. Monolithic integration of red LEDs based on AlGaInP and green LEDs based on InGaN by bonding for multicolor emission. Science. representing 710333 (2017).
Kang, C.-M. et al. Hybrid polychrome inorganic light-emitting diodes embedded on a single wafer using selective surface growth and adhesive bonding. ACS Photonics 54413–4422 (2018).
Jin, H. et al. Vertically stacked RGB LEDs with optimized distributed Bragg reflectors. Opt. Lett. 456671–6674 (2020).
Li, L et al. Transfer-printed microscopic tandem light-emitting diodes for color screens. proc. Natl Acad. Science. UNITED STATES 118e2023436118 (2021).
Mun, S.-H. et al. Highly efficient full color inorganic LEDs on a single wafer using multiple adhesive bonds. Adv. Mater. interfaces 82100300 (2021).
El-Ghoroury, HS, Chuang, C.-L. & Alpaslan, ZY 26.1: Invited talk: Quantum Photon Imager (QPI): A new display technology that enables more than 3D applications. SID Symp. To dig. Technology. Porridge. 46371–374 (2015).
Yadavalli, K., Chuang, C.-L. & El-Ghoroury, H. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optical array and CMOS image processor to enable small form factor display applications. In proc. SPIE 11310, Optical architectures for displays and detection in augmented, virtual and mixed reality (AR, VR, MR) (eds Kress, BC & Peroz, C.) 113100Z (SPIE, 2020).
Ayari, T. et al. Controlled wafer-scale exfoliation of InGaN/GaN multiple quantum well structures grown by metallic organic vapor phase epitaxy using h-BN in two-dimensional low adhesion layers. Appl. Phys. Lett. 108171106 (2016).
Li, X et al. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by organometallic vapor phase epitaxy. Crystal growth Des. 163409-3415 (2016).
Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544340–343 (2017).
Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction via graphene. ACS Nano 1510587–10596 (2021).
Kim, H.-s et al. Unusual strategies for using silicon-grown indium gallium nitride (111) for solid-state illumination. proc. Natl Acad. Science. UNITED STATES 10810072–10077 (2011).
Kim, T.-i et al. High-efficiency, micro-scale GaN light-emitting diodes and their thermal properties on unusual substrates. Little 81643-1649 (2012).
LaValle, SM Virtual reality (Cambridge Univ. Press, 2016).
Kum, H. et al. Epitaxial growth and layer transfer techniques for the heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2439–450 (2019).
Cheng, J.-H., Wu, YS, Peng, WC, and Ouyang, H. Effects of laser sources on damage mechanisms and reverse-bias leakage of laser-take-off GaN-based LEDs. J. Electrochem. Soc. 156H640 (2009).
Jiang, J. et al. Improved carrier lifetime in halogenated perovskite by remote epitaxy. Nat. Common. ten4145 (2019).
Journot, T. et al. Remote epitaxy using graphene enables unconstrained growth of GaN. Nanotechnology 30505603 (2019).
Bae, S.-H. et al. Spontaneous graphene-assisted relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnology. 15272-276 (2020).
Chang, H. et al. Graphene-driven strain engineering to enable strain-free epitaxy of an AlN film for a deep-UV light-emitting diode. Light Sci. Appl. 1188 (2022).
Chen, Z et al. Improved AlN film epitaxy for graphene-enabled deep-UV light-emitting diodes. Adv. Mater. 311807345 (2019).
Ryou, J. et al. Control of the quantum confined Stark effect in InGaN-based quantum wells. IEEE J. Salt. High. Quantum electron. 151080-1091 (2009).
Chen, J. & Packard, CE Mechanical substrate exfoliation based on controlled spalling for III-V solar cells: a review. Ground. Energy material. Ground. cells 225111018 (2021).
Zhang, B., Luo, C. & Li, Y.-F. Damage-free transfer of GaN-based light-emitting devices and reuse of sapphire substrate. ECS J. Solid State Sci. Technology. 9065019 (2020).
Bauhuis, GJ et al. Wafer reuse for repeated growth of III–V solar cells. Program. Photovoltaic. 18155-159 (2010).
Kim, H. et al. Multiplication of self-supporting semiconductor membranes from a single wafer by advanced remote epitaxy. Preprint at https://arxiv.org/abs/2204.08002 (2022).
Day, J. et al. High resolution full scale III nitride micro-displays. Appl. Phys. Lett. 99031116 (2011).
Meng, W. et al. Three-dimensional monolithic micro-LED display driven by an atomically thin array of transistors. Nat. Nanotechnology. 161231-1236 (2021).
Ludovic, D. et al. Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro-display applications. In proc. SPIE 10104, Gallium Nitride XII Materials and Devices (eds Chyi, J.-I. et al.) 1010422 (SPIE, 2017).
Chen, G.-S., Wei, B.-Y., Lee, C.-T. & Lee, HY Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 30262-265 (2018).
Park, J. et al. Electrically controlled submicrometer pixelization of InGaN micro-light-emitting diode screens for augmented reality glasses. Nat. Photon. 15449–455 (2021).
Carlson, A., Bowen, AM, Huang, Y., Nuzzo, RG, and Rogers, JA Transfer printing techniques for materials assembly and micro/nan device fabrication. Adv. Mater. 245284–5318 (2012).
Forrest, SR, Bradley, DDC & Thompson, ME Measuring the Efficiency of Organic Light Emitting Devices. Adv. Mater. 151043-1048 (2003).